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The aim of this paper is to discuss the limit state attained at infinite time in the structural relaxation process. 
This state usually is identified with the equilibrium state extrapolated from the experimental data obtained 
at temperatures above the glass transition. The analysis is conducted with the help of a phenomenological 
model with fitting parameters, based on an equation for the evolution of the configurational entropy during 
the process. The model avoids the use of the fictive temperature, which makes it easier to introduce a 
different hypothesis on the limit states of the process. 0 1997 Elsevier Science Ltd. All rights reserved. 
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INTRODUCTION 

The knowledge about the glassy state of amorphous 
materials, as a non-equilibrium state, is closely connected 
with the knowledge of the kinetics of the structural 
relaxation, the process of approach to an hypothetic 
equilibrium state of the material. The glass transition 
itself is an effect of the exponential dependence of the 
structural relaxation times on temperature. In this sense 
the modelling of the structural relaxation is important 
and it has attracted the attention of many researchers 
in the past decades. Two main characteristics of the 
structural relaxation have been experimentally estab- 
lished since the F)_~ ioneering studies: nonlinearity and 
nonexponentiality . Several phenomenological models 
try to reproduce these two main features by means of 
three key tool?“‘: (1) a distribution of relaxation times, 
(2) the dependence of the structural relaxation times on 
temperature and on a structure parameter, typically the 
fictive temperature, and (3) the hypothesis that linearity 
can be obtained when the equations of the model are 
expressed in terms of a reduced time5’7. The models thus 
developed contain a set of parameters that in most cases 
play the role of material constants in the deductions 
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leading to the model equations. The model parameters 
are usually determined by fitting the experimental results 
with some least-squares routine, but other methods have 
been proposed12 as well. In differential scanning calori- 
metry (d.s.c.) measurements the experimental results are 
curves of the specific heat capacity at constant pressure, 
cp( T), measured during heating scans from a temperature 
T1 below the glass transition temperature 7’p to a tem- 
perature To above Tg. Previously, the samples have been 
subjected to a thermal treatment that may include or not 
an isothermal stage at an annealing temperature T, for a 
certain annealing time t,. The essential test for the 
validity of such models is to check whether or not the 
model parameters thus determined are in fact material 
parameters independent of the thermal history, i.e. 
whether the model equations with a single set of param- 
eters can accurately reproduce the experimental cp( T) 
curves measured after different thermal histories. Several 
works have shown that this is not easy to accomplish in 
the case of the Scherer-Hodge or the Narayanaswamy- 
Moynihan models13m16. 

Most of the theories of the structural relaxation that 
have been developed employ the concept of the fictive 
temperature Tf introduced by Tool’. The fictive tem- 
perature equals the temperature T when the material is 
in equilibrium; in the glassy state, the value of T, depends 
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on the formation history of the glass starting from an 
equilibrium state, i.e. on the cooling rate and on tem- 
perature and time of the isothermal annealing periods6. 
The state of the polymer out of equilibrium (at a fixed 
pressure) is characterized both by the temperature and 
the fictive temperature, and the expressions for the struc- 
tural relaxation times in processes at constant pressure 
contain T and Tf as arguments. 

An important hypothesis of these phenomenological 
models is that the limit state attained at infinite time in 
the structural relaxation process at a constant tempera- 
ture T, is the equilibrium state in which Tf = T,. This 
means that it is assumed that the structural relaxation 
process takes the material to a state which can be 
obtained from extrapolation of the equilibrium states 
measured at temperatures above the glass transition. 
However, some experimental evidence casts doubts on 
this assumption, as we will discuss below. Thus it is 
interesting to develop a phenomenological model for the 
structural relaxation which permits to introduce different 
hypothesis on the limit state at infinite time. This is easier 
to do if, instead of following the fictive temperature 
during the structural relaxation process, one determines 
the evolution of the configurational entropyi,& directly. 
We have recently proposed such a model ’ . It is a 
modification of the Scherer-Hodge one, in the sense that 
it uses the Adam-Gibbs equation for the dependence of 
the relaxation time on T and S,, in addition to the usual 
linearization by means of the reduced time and the use 
of the Kohlrausch-Williams-Watts (KWW) relaxation 
function19’20 employed in many phenomenological models. 
In the present paper, after recalling the model equations 
we compare the model predictions with d.s.c. experi- 
mental results on poly(ether imide). 

EXPERIMENTAL 

Poly(ether imide) (PEI) UltemTM from General Electric 
was used in this study. The experiments were carried out 
in a Perkin-Elmer DSC4 differential scanning calori- 
meter on a single encapsulated sample. All the experi- 
ments started at 250°C with the sample in equilibrium. 
The sample was then cooled down to T, at a rate of 
40°C min-* , kept at this temperature for a time t,, and 
cooled down again at 40°C min-’ until 150°C. Then the 
measuring scan was conducted heating at 10°C min-’ till 
250°C. The results of three such experiments with dif- 
ferent T, are presented together with two cp( T) curves 
measured after a cooling from 250°C to 150°C at 
0.5”C min-’ and 40°C min-’ respectively. The last one 
will be called the reference scan. 

MODEL FOR THE STRUCTURAL RELAXATION 
BASED ON THE EVOLUTION OF THE 
CONFIGURATIONAL ENTROPY 

As is usual in phenomenological theories of the 
structural relaxation, the configurational entropy at a 
time t, S,(t), is regarded as a function of the whole 
thermal history experienced by the sample up to t, T(C), 
-cc < < < t (we consider here only the dependence on 
temperature of S,; other variables such as pressure are 
regarded as constant, as in fact happens in d.s.c.). This 
fact is sometimes expressed by saying that SC(t) is a 
function of the temperature history T(C). Both for 
simplicity and because it is adequate for the type of 
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processes we have in mind, we consider only temperature 
histories which were constant up to time < = 0. More- 
over, as already mentioned in the Introduction, the 
functional relation between S,_(t) and T(c) is a non-linear 
one. Whereas linear memory effects can all be repre- 
sented in terms of a single model (Boltzmann’s linear 
hereditary equation), such a universal representation 
does not exist for non-linear relationships. Some addi- 
tional assumptions are thus necessary, which are fixed 
taking into account the existing experience with the 
phenomenology of the structural relaxation. 

First of all, we rescale the elapsed time t by assigning 
to it a reduced time5 [ defined by a strictly increasing 
mapping li 

(1) 

where + is a positive function which takes into account 
the changing structure of the material: for each time 
argument 0 it depends on the values of temperature and 
configurational entropy at that time instant, +(a) = 
r[S,(cr), T(o)], and we assume that this last dependence 
has the same form as Adam and Gibbs’ equation21, i.e. 

r(S,, T) = Aexp A 
( 1 c 

(2) 

originally intended by its authors only for equilibrium. 
Indeed, when in equation (2) the configurational entropy 
S, has the equilibrium value gq( T) we have 

7[gq(T), T] = A exp = T”~(T) (3) 

which defines Adam and Gibbs’ curve req( T) of equi- 
librium relaxation times. A is a pre-exponential constant, 
and the parameter B in Adam and Gibbs’ theory is 
related to the microscopic picture of the process through 
B = s,Ap/k, where s, means the configurational entropy 
of the smallest cooperatively rearranging region, Ap 
is the free energy barrier hindering configurational 
rearrangement per mol of molecules or chain segments, 
and k is Boltzmann’s constant. 

Further we assume that, if the material is subjected to 
an arbitrary temperature history which reaches a tem- 
perature T and then stays at T for a time lapse A, the 
state attained by the material as A grows without limit 
is uniquely determined by the temperature value T, and 
is independent of further details of the temperature 
history. For this limit state we assume thus that a func- 
tion Sim(T) exists, which depends only on temperature, 
which gives the limit value of the configurational entropy 
SC(t) in a process such as that just described when 
t --t cm. 

With these physical inputs in mind, we suppose that, 
after resealing time in the way described, the non-linear 
function giving the dependence of S,(t) on T(c) 
is expressible in the form of a ‘quasilinear’ relationship 
between S,(t) and T(u),_the temperature history expressed 
in the new time scale [T(u) = T(c) when u = ti(<)]: 

&(t) = Sfm[T(t)] - $‘” &2(t) - u]dS;m[@)] (4) 

In this equation 4 is a relaxation function, and so it 
is guaranteed that, in processes of the type discussed 
above (which include those typical for the structural 
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relaxation), lim r+oo SC(t) = SE”(T). Since the tempera- 
ture history may include discontinuous jumps, the inte- 
gral in equation (4) must be interpreted as a Riemann- 
Stieltjes integral, and, in general, it will not be possible 
to write dSim[T(u)] = (d$“/dT)(dT/du)du. Equation 
(4) can be applied to any thermal history T(c) of the type 
considered at the beginning of this paragraph. 

Non-exponentiality, one of the most clearly recog- 
nized experimental features of structural relaxation4’5. , 
is accounted for by assuming a form of 4 g,vn by 
a Kohirausch-Williams-Watts-type formula : for 
o<u<cc 

4(u) = exp(-uP) (5) 
If the limit state of the structural relaxation process 

would coincide with the extrapolation of the equilibrium 
values determined at tern eratures 

T! 
above the glass 

transition one would have Sim (T) = gq (T) with 

$4(T) = 
f 

T Acp@) 
T: 

--g-de 

where Ac,( T) = jj( T) - cps( T) is the configurational 
heat capacity, the ifference between the heat capacity of 
the equilibrium liquid and the heat capacity of the glass 
at the same T, and T2 is the Gibbs-DiMarzio transition 
temperature22. In general, we put 

dSfm( T) 
A&T) = T dT 

and Acp( T) = >p( T) - cPg (T). SE”(T) is calculated as 

s T 
SFm(T) = S,eq(T*) + 

Acim(@) dB 
~ 

T’ Q (8) 

where T* is a temperature above Tg in the equilibrium 
liquid state, where the limit state coincides with the 
equilibrium state (below we take T’ = Tg + 10°C). 

The application of the above set of equations to a 
multiple-step thermal history, T(t) = To + EYE=, (Tie 
T,Pl)h(t - t,_,) (with to = 0) leads to 

SC(t) = SEm[T(t)] - &Sim(Ti) 
i=l 

(9) 

when the form assumed for i(g) is introduced in equa- 
tion (9), an equation for configurational entropy out of 
equilibrium results which has, besides the function 
AC:“(T), four adjustable parameters: A, B, T2 and /3. 
Three of them, A, B, T2, together with A$“( T) define 
the dependence of the equilibrium relaxation times on 
temperature. equation (3), and p can be interpreted as a 
width parameter of a distribution of relaxation times. 

Equation (9) must be solved numerically. In this work 
cooling and heating stages in the thermal histories were 
replaced by a series of l-degree temperature jumps fol- 
lowed by isothermal stages with a duration calculated to 
result in the same overall rate of temperature change as 
in the actual experiments. The configurational entropy 

was calculated at time instants tk with equation (9) and 
the relaxation time at those time instants is then cal- 
culated using equation (2). This value of the relaxation 
time is used to calculate the reduced time in the subse- 
quent time instant tk+l, according to equation (1). After 
each temperature jump the reduced time was evaluated 
at time instants tk = 0.001 2k s with integer k. 

Comparison of the experimental results with the 
model calculations requires to express these in terms of 
cp( T) curves. Owing to the inherent irreversibility of the 
structural relaxation process, there is no straightforward 
relationship between the configurational entropy and 
cp( T). However, it is true that 

cp(T) - c&T) = z 

where H, is the specific configurational enthalpy. For the 
dependence of H, upon the thermal history an analogous 
derivation to that of S, is assumed, which leads to the 
equation, analogous to equation (9) 

H,(T) =Hzm[T(t)] - e[Him(Ti) -Hz”(Ti_,)] 
i=l 

I (10) 

for a stepped temperature history. The assumption made 
here in order to determine H, is that enthalpy and 
entropy have the same relaxation function 4, i.e. it is 
assumed that the relaxation times for enthalpy and 
entropy are the same, and consequently they are also the 
same for the Gibbs free energy. 

RESULTS 

The five experimental cp (T) curves measured are shown 
on Figure 2. The glass transition in this polymer is quite 
narrow, as shown by the small differences between the 
onset of the glass transition Tg OnSet = 209”C, the mid- 
point glass transition temperature, Tg midpoint = 213°C 
(determined from the midpoint of the cp increment in 
the transition), and the fictive temperature in the glassy 
state, T, = 21O”C, determined by the intersection of the 
enthalpy lines corresponding to the glass and the equi- 
librium liquid23. All three of them were determined from 
the c,(T) curve measured after cooling at 40°C min-’ 
(reference scan). In this work we take the value Ty = 
210°C measured in the reference scan as the glass tran- 
sition temperature Tp of the sample. 

Three annealing temperatures were selected: 21O”C, 
200°C and 17O”C, i.e. T, = T., T, = Tg - 10°C and 
T, = Tg - 40°C. The peak showing up in the cp( T) curve 
measured after thermal treatments including isothermal 
annealings depends only weakly on the value of T,, 
maybe because of the narrow temperature interval of the 
glass transition. 

In none of the cP(T) curves measured does a peak 
appear at a temperature below Tg (a sub-T, peak), as 
happens in other polymers for high cooling rates and low 
annealing temperatures9”5.16’24-2 . Probably this is also 
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Figure 1 Experimental cp(T) curves (open circles) measured after 
cooling at 40”Cmin-’ (al,bl), and 0.5”Cmin-’ (a2,b2) and after ther- 
mal histories that include an isothermal annealing at 170°C for 
1550min (a3,b3), 200°C for 1200min (a4,b4) and 210°C for 1OOOmin 
(a5,b5). The solid line in al to a5 represents the prediction of the model 
with the assumption Szm (T) = S,Cq (T), B = 1500 J g-’ and the remain- 
ing parameters shown in Table I. The solid line in bl to b5 represents 
the calculations with a SFm(T) curve according to Figure 3, B = 
1500 J g-’ and the remaining parameters as shown in Table 2 

due to the narrow temperature interval of the glass 
transition. 

DISCUSSION 

Application qf the model with S:“‘(T) = Szq(T) 

With the assumption Scq(T) = S:m( T) the model 
contains four adjustable parameters, A, B, T, and p. 
The configurational heat capacity AC,(T) measured in 
this polymer is nearly independent from temperature. In 
the model calculation it was considered temperature- 
independent with a value of 0.251 J g K-l, the average of 
the values determined for the c,(T) curves measured 
after the different thermal treatments. 

The set of four parameters of the model was deter- 
mined via a simultaneous least-squares fit of a set of 
five experimental c,(T) curves, shown on Figure 1 (al- 
a.5). The correlation between the four parameters has 
been amply reported for phenomenological models such 
as those of Narayanaswamy-Moynihan or Scherer- 
Hodge 9,13)15.16.2533@32, and it is also found in the one 
proposed in the present work. Basically, a correlation is 
found between B and T2 (see below). To handle this 
problem, the parameter B was kept fixed while the other 
three were adjusted, and the fitting procedure was then 
conducted for different values of B. The Nedler and 
Mead33 search routine was employed here. The fitting 
procedure thus leads to a set of three parameters, p, T2 
and A, for each fixed value of the parameter B. 

Figure la shows the fit obtained keeping B = 
1500 J g-’ constant. The values of A, T2 and /3 obtained 
with the search routine are shown in Table 1. The model 
is unable to reproduce accurately the five cp( T) curves 
considered, and this happens for all the selected values of 
the parameter B. It must be remarked that the peak in the 
cp( T) curve predicted by the model for a thermal treat- 
ment including an annealing at 210°C is much higher 
than the one appearing in the experiment. The cP(T) 
curves predicted for the thermal treatment including no 
annealing and for the corresponding to an annealing at 
200°C are close to the experimental ones. For the four 
thermal treatments mentioned above, the fitting routine 
leads to calculated :p (T) curves coincident for all the 
values of B. The height of the peak in the calculated 
c,(T) curve for the annealing at 170°C depends on the 
value of B fixed in the search routine as shown in Figure 
2, but the peak shows up always at a temperature lower 
than the experimental one. This behaviour is quite 
similar to that found in polycarbonate’7, a polymer that 
shows also a narrow glass transition temperature inter- 
val. In polymethacrylate polymers” the cp (T) measured 
after thermal treatments including an annealing at low 
temperature shows a sub-T, peak that is correctly repro- 
duced by the model with the assumption Sim(T) = 
gq (T), but the behaviour of the model predictions in 
thermal treatments including annealing at temperatures 
near Tg was in these polymers the same as described here 
for PEI. 

The values obtained for the model parameters are 
significantly different for the different values of B chosen, 
as shown in Table I. Obviously there is a great uncer- 
tainty in the values of the parameters due to the consider- 
able error in the curve fitting. The correlation between 
the parameters in the model appears quite clearly. It will 
be discussed in some detail in the next section. 
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Application qf the model with an additional assumption 
for AcF 

The impossibility of modelling the cP (T) experimental 
curves after annealings at temperatures close to Tg 
simultaneously with the cP( T) curves measured after the 
rest of thermal treatments has been found with our 
model in different polymers, and this difficulty also 
appears with other four-parameter models, which usu- 
ally predict narrower and higher peaks than the experi- 
mental ones after annealings close to Tg9,16. Studies of 
enthalpy relaxation in amorphous polymers have 
reported that the extrapolation of the experimental 
values of Ah(T, t) to long times leads to limit values 
considerably lower than the theoretically predicted 
ones29,34m37 (a significant exception to this is represented 
by ref. 38; in it, heat capacity increments in the glass 
transition of polycarbonate seem to be compatible with 
the limiting values of the enthalpy loss during the 
isothermal annealing at temperatures very close to T ). 
This raises doubts on the identification of $” with $. 
This argument would support the hypothesis of a meta- 
stable state, intermediate between those of equilibrium 
liquid and glass, as the limit condition of the material in 
the structural relaxation process, which accordingly 
would be unable to reach the equilibrium state. The 
reason for this could lie in a collapse of the configura- 
tional rearrangements when the number of conforma- 
tions available for the molecules or polymer segments 
would attain a certain limit value higher than the one 
corresponding to equilibrium. Topological constraints 
such as entanglements, present in polymers but not in 
inorganic glasses, could explain why structural relaxa- 
tion in polymers would exhibit this distinctive feature37. 

Our model equations can be used to check whether the 
predicted curves under such a hypothesis are closer to 
experiment than those previously analysed. The sketch 
of Figure 3a shows the assumed shape for the curve 
of configurational entropy in these metastable states, 
SFm(T), in the temperature interval of the glass transi- 
tion: a shape similar to that of an experimental cooling at 
a finite rate, but with a different change of AC,. Figure 36 
represents the assumption here made regarding the cPl( T) 
behaviour of the limit states, to be introduced in the 
model equations. Simply, we assume that the behaviour 
of the transition from liquid to the hypothesized meta- 
stable limit states is analogous to that from the liquid to 
the glassy states. Further, for temperatures above T* = 
Tp + 10°C we take >jm(T) = c,,(T). 

The definition of the shape of the curve SE”‘(T) 
introduces a new parameter 6 in the model (see Figure 3). 
The fitting routine was the same described above. The 
value of B was fixed and the least-squares routine sought 
the set of four parameters 6, p, T2 and In A that best 
reproduced the five experimental cP( T) curves shown on 
Figure 1. Table 2 shows the set of parameters found for 
each value of B. The curves predicted by the model are 
nearly identical for values of B ranging between 1000 and 
3500 J g-l. The model curves predicted are represented in 
Figure l(bl-b5) for the parameters corresponding to 
B = 1500 J g-’ . The improvement of the theoretical pre- 
diction with the modified hypothesis on SE” is very 
apparent. Not only is the height of the peak in the cP( T) 
curve measured after annealing at 210°C (Figure Z(b5)) 
correctly reproduced, but also the cP( T) curve calculated 
for an annealing at 170°C perfectly matches the 

Table 1 Model parameters found with the assumption 
SE”(T) = gq( T) for each value of B 

B (Jg-‘1 P T2 (“C) In A (s) 

500 0.36 170 -38.5 
1000 0.39 150.7 -55.0 
1500 0.42 138 -68.5 

8 
180 200 220 240 

Temperature(OC) 

Figure 2 cp(T) measured after a thermal history that includes an 
isothermal annealing at 170°C for 1500min. Model calculations with 
B = 500, 1000 and 1500 J g-’ (and the remaining parameters according 
to Tuble I) are shown as solid lines. The peak appearing in cp at 
approximately 210°C decreases for increasing values of B; this identifies 
the different curves. The experimental results are represented by open 
circles 

SC 

6 

i 

- - -_-- 
_. _-.c. 4 ., ’ 

-_yi 

/ 
I. I 

T, -5 T, Tg+10 T 

Figure 3 (a) Sketch of the configurational entropy corresponding to 
the liquid state (dashed line), to an experimental cooling scan at a finite 
cooling rate (solid line) and to the metastable state line, hypothetical 
limit of the structural relaxation process (dashed-dotted line). (b) cp( T) 
lines corresponding to the three cases described in (a) 

Table 2 Model parameters found with Szrn (T) as in Figure 3 for each 
value of B 

B(JK’) 6J(gK)-’ /3 T2 (“‘J In A (s) 

500 0.134 0.40 167.2 -36.6 
1000 0.115 0.44 138.7 -45.0 
1500 0.116 0.48 120.0 -53.6 
2000 0.115 0.52 103.9 -60.3 
2500 0.114 0.55 87.3 -64.3 
3000 0.113 0.58 71.2 -67.1 
3500 0.115 0.60 63.6 -73.9 
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experimental one. Thus a single set of five parameters 
is able to reproduce the structural relaxation process of 
this polymer. The problem, as in the case of poly- 
carbonateI and polymethacrylate polymer”, is that 
there exist several sets of five parameters that predict the 
same cp(T) curves. It is thus necessary to find some 
complementary information to decide between the differ- 
ent sets of parameters. 

Before that, nevertheless, some conclusions can be 
reached from the d.s.c. experiments and the model 
calculations alone. The value of S that characterizes the 
difference between the curves of Szm( T) and SEq( T) is 
independent of B with a value of 0.115, which is a 46% of 
AC, (7’). This seems to imply that the structural relaxa- 
tion process would take the material to a limit state quite 
far from the extrapolated equilibrium line. 

The correlation between the model parameters appears 
quite clearly. When B increases, lower values of T2 and of 
In A are found. These three parameters determine the 
curve of equilibrium relaxation times. Figure 4 shows the 
#q(T) and 71irn( T) curves determined from the different 
sets of parameters of Table 2, where 

71irn( T) = A exp (11) 

and 7eq (T) is given by equation (3) (of course, ?’ (T) = 
T”~(T) for T > Tg + 10°C). The ?‘(T) curves show a 
change of slope around Tg that corresponds to the 
change of slope of SEm( T). There is an outstanding 
coincidence between the curves corresponding to the 
different values of B, at least in the time interval com- 
prised between lop5 and lo3 s. The relaxation time in the 
limit state is 200s when the temperature is equal to Tg 
for all the sets of parameters. It can be concluded that 
the curve of ‘calorimetric’ relaxation times in equilibrium 
or in the limit state of the structural relaxation is a 
material ‘parameter’ which can be determined uniquely 
from the d.s.c. experiments. The numerical determination 

8 

8 

-6 

-8 
1.9 2.0 2.1 2.2 

l/T *lo3 
Figure 4 Limit relaxation times ~~~~~ T) determined by the model with 
S:“(T) as in Figure 3, for different values of B (see text): (0) 
B=1OOOJg~‘;(~)B=2000Jg~‘;(~)B=3000Jg~’.Thevaluesof 
the remaining parameters are shown in Table 2. The full line represents 
the equilibrium relaxation time ?‘(T) with B = lOOOJg_’ and the 
remaining parameters as in Table 2 

of the parameters B, T2 and In A requires additional 
information. 

As happened in polycarbonate17 and polymethacry- 
late polymers’8, as the value of B increases the value of 
T2 decreases and thus the difference Tg - T, increases. In 
PEI, Tg - T2 varies between 71 “C for B = 1000 J g-’ and 
146.4”C when B = 3500 J g-l. Reported values for this 
difference obtained from viscoelastic measurements39 
agree better with the lower values of B. The absolute 
value of the pre-exponential factor In A also increases 
with the value of B, and the more reasonable ones are 
those corresponding to the lowest values of B. 

There is also a correlation between the value of B and 
the one found for ,0, which varies from 0.44 to 0.60 when 
B ranges from 1000 to 3500 J g-l, The uncertainty in the 
determination of this parameter is very high when such a 
broad range of B values is considered but, taking into 
account the arguments of the above paragraph, the more 
reasonable values are around 0.45, the ones correspond- 
ing to the lowest values of B. 

The present study and the previous ones’7,‘x, show 
that the phenomenological model is significantly improved 
in its agreement with experiment if the additional hypo- 
thesis is made, that the limit behaviour of the structural 
relaxation process departs from the usually accepted 
extrapolation from super-Tg equilibrium. This encour- 
ages further thoughts about the meaning of this situ- 
ation. In this regard, it must be remarked that, from the 
point of view of the structural relaxation kinetics, the 
hypothesis of metastable limit states defined by Sf”( T) 
different from the extrapolated equilibrium states is 
indistinguishable from the hypothesis that the very same 
equilibrium line is ‘bended’ through the glass transition 
region (and thus departs, for temperatures in this inter- 
val and lower, from the extrapolation defined by the 
super-T, portion of the line). In this last case, the usual 
extrapolation based on an analytical expression for the 
super-?, c,(T)-curve would have to be replaced by 
something similar to the sketch of Figure 3b, i.e. cp (T) 
would be, in fact, the true course of c,,l (T) (the concrete 
form of this curve probably can vary to a certain extent 
without influencing appreciably the model fit, and our 
choice for it in the present work was determined solely by 
the want of introducing not more than one additional 
parameter into the model). The important consequence 
of this line of reasoning would be that the configura- 
tional entropy in the limit states of the structural relaxa- 
tion process would not be zero at T2 and, moreover, this 
parameter would thus lose much of its physical meaning. 
In any case, to keep a distinction between SF” and Scq 
would be justified if the latter were the outcome of some 
theoretical consideration based, for example, on statis- 
tical mechanics, and the former could be influenced by 
kinetic parameters of the process. 
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